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The Bayesian model of confidence posits that confidence reflects the
observer’s posterior probability that the decision is correct. Hangya,
Sanders, and Kepecs (2016) have proposed that researchers can test the
Bayesian model by deriving qualitative signatures of Bayesian confi-
dence (i.e., patterns that one would expect to see if an observer were
Bayesian) and looking for those signatures in human or animal data. We
examine two proposed signatures, showing that their derivations con-
tain hidden assumptions that limit their applicability and that they are
neither necessary nor sufficient conditions for Bayesian confidence. One
signature is an average confidence of 0.75 on trials with neutral evidence.
This signature holds only when class-conditioned stimulus distributions
do not overlap and internal noise is very low. Another signature is that
as stimulus magnitude increases, confidence increases on correct trials
but decreases on incorrect trials. This divergence signature holds only
when stimulus distributions do not overlap or noise is high. Navajas
et al. (2017) have proposed an alternative form of this signature; we find
no indication that this alternative form is expected under Bayesian confi-
dence. Our observations give us pause about the usefulness of the qual-
itative signatures of Bayesian confidence. To determine the nature of the
computations underlying confidence reports, there may be no shortcut to
quantitative model comparison.

1 Introduction

Humans possess a sense of confidence about decisions they make, and ask-
ing human subjects for their decision confidence has been a common psy-
chophysical method for over a century (Peirce & Jastrow, 1884). But despite
the long history of confidence reports, it is still unknown how the brain
computes confidence reports from sensory evidence. The leading proposal
has been that observers’ confidence reports are a function of only their
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posterior probability that their decision is correct (Drugowitsch, Moreno-
Bote, & Pouget, 2014; Hangya, Sanders, & Kepecs, 2016; Kepecs & Mainen,
2012; Meyniel, Sigman, & Mainen, 2015; Pouget, Drugowitsch, & Kepecs,
2016), a hypothesis that we call the Bayesian confidence hypothesis (BCH)
(Adler & Ma, 2018).

In recent years, some researchers have tested the BCH by formally com-
paring Bayesian confidence models to other models (Adler & Ma, 2018;
Aitchison, Bang, Bahrami, & Latham, 2015). Although this is the most thor-
ough method to test the BCH, it can be laborious in practice. One could
instead try to describe signatures of the BCH: qualitative patterns that
should theoretically emerge from Bayesian confidence and then look for
those patterns in real data. Hangya et al. (2016) propose four signatures,
some of which have been observed in behavior (Kepecs, Uchida, Zariwala,
& Mainen, 2008; Lak et al., 2014; Sanders, Hangya, & Kepecs, 2016) and in
neural activity (Kepecs et al., 2008; Komura, Nikkuni, Hirashima, Uetake,
& Miyamoto, 2013).

These signatures are not unique to the Bayesian model; they are expected
under a number of other models. Kepecs and Mainen (2012) argue that
this is an advantage for a confidence researcher who is not interested in
the precise algorithmic underpinnings of confidence. A researcher may ob-
serve these signatures in behavior, reasonably conclude that she has evi-
dence that the observer is computing some form of confidence, and probe
more deeply into, for instance, neural activity (Kepecs et al., 2008). In this
letter, however, we consider the researcher concerned with understanding
the computations underlying an observer’s sense of confidence. We, along
with Insabato, Pannunzi, and Deco (2016) and Fleming and Daw (2017),
argue that for such a researcher, the fact that these signatures emerge from
multiple models poses a problem. These signatures are not sufficient condi-
tions for any particular model of confidence, including the Bayesian model.
In other words, observation of these signatures does not constitute strong
evidence in favor of any particular model. Because of this insufficiency, we
view with skepticism any research that uses observation of these signatures
as the basis for a claim that an observer uses a Bayesian (Navajas et al., 2017),
“statistical” (Sanders et al., 2016), or any other specific form of confidence.

Although they do not claim that the signatures are sufficient conditions,
Hangya et al. (2016) do claim that the signatures are necessary conditions
for the BCH—that if confidence is Bayesian, these patterns will be present
in behavior. Observation of a single necessary but not sufficient signature
does not imply that the BCH is true; one would need to observe several
signatures in order to gain confidence in the nature of confidence.1

1
Restating this logic in probabilistic terms, a signature being a necessary condi-

tion for the BCH implies that p(signature observed | BCH is true) = 1. A signature be-
ing an insufficient condition implies that p(signature observed | BCH is false) > 0. By
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Limitations of Proposed Signatures of Bayesian Confidence 3

The main contribution of this letter is to show that three signatures are
not necessary conditions of Bayesian confidence, which reduces the over-
all value of the qualitative signature method for testing the BCH. We de-
scribe conditions under which these signatures are expected or not expected
under the BCH. Researchers interested in Bayesian confidence should be
aware of these conditions in order to avoid making one of two mistakes. A
researcher who incorrectly believes that a signature is expected under the
BCH will then incorrectly interpret the observation of a signature as posi-
tive evidence in favor of the Bayesian model. Conversely, an observer who
fails to observe that signature will incorrectly rule out Bayesian confidence.

One signature is a mean confidence (i.e., the observer’s estimated prob-
ability of being correct) of 0.75 on trials with neutral evidence. In section 3,
we show that under the BCH, this signature will be observed only when
stimulus distributions do not overlap and noise is very low. Another sig-
nature is that as stimulus magnitude increases, mean confidence increases
on correct trials but decreases on incorrect trials. In section 4, we show that
under the BCH, this signature will be observed only when stimulus distri-
butions do not overlap or noise is high. (Readers who are interested only
in nonoverlapping categories may skip section 4 or read it for intuition’s
sake.) For completeness, we briefly discuss insufficiency for both signa-
tures. In section 5, we consider an alternative divergence signature recently
proposed by Navajas et al. (2017). We show that this signature is not ex-
pected under the BCH. All code used for simulation and plotting is avail-
able at github.com/wtadler/confidence/signatures.

We hope that this letter will contribute some clarity and intuition to the
study of Bayesian confidence.

2 Binary Categorization Tasks

We restrict ourselves to the following widely used family of binary percep-
tual categorization tasks (Green & Swets, 1966). On each trial, a category
C ∈ {−1, 1} is randomly drawn with equal probability. Each category cor-
responds to a category-conditioned stimulus distribution (CCSD) p(s | C),
where s could be, for example, an odor mixture (Kepecs et al., 2008), the
net motion energy of a random dot kinematogram (Kiani & Shadlen, 2009;
Newsome, Britten, & Movshon, 1989), the orientation of a Gabor (Adler &
Ma, 2018; Denison, Adler, Carrasco, & Ma, 2018; Qamar et al., 2013), or the
mean orientation of a series of Gabors (Navajas et al., 2017). The CCSDs are
mirrored across s = 0: p(s | C = −1) = p(−s | C = 1). Additionally, they are
chosen such that a stimulus s is at least as likely to be drawn from category
C = 1 as C = −1: p(s | C = 1) ≥ p(s | C = −1) for all s ≥ 0.

Bayes’s rule, for signatures that are both necessary and insufficient, p(BCH is true |
signature(s) observed) will increase with the observation of each signature but will never
reach 1.

https://github.com/wtadler/confidence/tree/master/signatures
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4 W. Adler and W. J. Ma

Figure 1: Generative model of the task.

A stimulus s is drawn from the chosen CCSD and presented to the
observer. Observers do not have direct access to the value of s; instead,
they take a noisy measurement x, drawn from the distribution p(x | s, σ ) =
N (x; s, σ ), which denotes a gaussian distribution over x with mean s and
standard deviation σ (see Figure 1).

If an observer’s choice behavior is Bayesian (i.e., minimizes expected
loss, which, in a task where each category has equal reward, is equiv-
alent to maximizing accuracy), he computes the posterior probability of
each category by marginalizing over all possible values of s: q(C | x, σ ) =∫

q(C | s)q(s | x, σ )ds. In this letter, we use p(. . .) to refer to the true prob-
ability distributions used to, for example, generate stimuli and measure-
ments and q(. . .) to refer to the observer’s belief about such distributions.
In some cases, q(. . .) may not equal p(. . .), a situation known as model mis-
match (Acerbi, Vijayakumar, & Wolpert, 2014; Beck, Ma, Pitkow, Latham, &
Pouget, 2012; Orhan & Jacobs, 2014).

After computing the posterior, observers make a category choice Ĉ by
choosing the category with the highest posterior: Ĉ = argmaxCq(C | x, σ ).
For the conditions described above, that amounts to choosing Ĉ = 1 when
x > 0, and Ĉ = −1 otherwise (see appendix A).

Furthermore, if the observer’s confidence behavior is Bayesian, it will be
some function of the believed posterior probability of the chosen category.
This probability is q(C = Ĉ | x, σ ) = maxC q(C | x, σ ). Because it is a deter-
ministic function of x and σ , we refer to it as conf(x, σ ).2 (See appendix B
for derivations of conf(x, σ ) for all stimulus distribution types used in this
letter.)

3 0.75 Signature: Mean Bayesian Confidence Is 0.75 for Neutral
Evidence Trials

Hangya et al. (2016) propose a signature concerning neutral evidence
trials—those in which the stimulus s is equal to 0 (i.e., there is equal

2
Note that our assumption that confidence and category choice are deterministic func-

tions of x amounts to an assumption that there is no noise at the action (i.e., reporting)
stage.
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Limitations of Proposed Signatures of Bayesian Confidence 5

evidence for each category) and observer performance is at chance.
Bayesian confidence on each individual trial is always at least 0.5. One can
intuitively understand why this is. In binary categorization, if the poste-
rior probability of one option is less than 0.5, the observer makes the other
choice, which has a posterior probability above 0.5. Therefore, all trials have
confidence of at least 0.5, and mean confidence at any value of s is also at
least 0.5. Hangya et al. (2016) go beyond these results and provide a proof
that under some assumptions, mean Bayesian confidence on neutral evi-
dence trials is exactly 0.75. We refer to this prediction as the 0.75 signature,
and we show that it is not always expected under a normative Bayesian
model.

3.1 The 0.75 Signature Is Not a Necessary Condition for Bayesian
Confidence. To determine the conditions under which the 0.75 signature
is expected under the Bayesian model, we used Monte Carlo simulation
with the following procedure. We generated an experiment in which all
stimuli s were 0: p(s | C) = δ(0), where δ is the Dirac delta function. (For
this analysis, the true generating distribution p(s | C) does not matter; we
could have instead used other distributions p(s | C) and only analyzed tri-
als in which s is very close to 0.) For a range of measurement noise lev-
els σ , we drew measurements x from p(x | s, σ ) = N (x; s = 0, σ ). Using
gaussian or uniform functions q(s | C), we computed Bayesian confidence
conf(x, σ ) for each measurement. We then took the mean confidence, equal
to Ex|s=0 [conf(x, σ )].

The 0.75 signature holds only if the SD of the noise is very low relative to
the range of the believed CCSD and if the observer has accurate knowledge
of the low noise (see appendix D). Additionally, the subject must believe
that the CCSDs are nonoverlapping (see Figure 2a, dotted line; any nonover-
lapping CCSDs will do). If the observer believes that the CCSDs overlap by
even a small amount, mean confidence on neutral evidence trials drops to
0.5. Therefore, in an experiment with overlapping CCSDs, one should not
expect a Bayesian observer to produce the 0.75 signature. In experiments
with nonoverlapping CCSDs, an observer’s false belief might also cause
him to not produce the 0.75 signature. We use the example of overlapping
uniform CCSDs (see Figure 2a, solid lines) to demonstrate the fragility of
this signature, although such distributions are not common in the literature.
Overlapping gaussian CCSDs (see Figure 2b), however, are relatively com-
mon in the perceptual categorization literature (Adler & Ma, 2018; Ashby &
Gott, 1988; Green & Swets, 1966; Norton, Fleming, Daw, & Landy, 2017; Qa-
mar et al., 2013) and arguably more naturalistic (Maddox, 2002). Because
the 0.75 signature requires both low measurement noise and the belief of
nonoverlapping CCSDs, mean 0.75 confidence at neutral evidence trials is
not a necessary condition for Bayesian confidence.

Additionally, the 0.75 signature is relevant only in experiments where
subjects are specifically asked to report confidence in the form of a perceived
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6 W. Adler and W. J. Ma

Figure 2: The 0.75 signature is not a necessary condition for Bayesian confi-
dence. The y-axis indicates mean Bayesian confidence on trials for which s = 0.
Each inset corresponds to a line, in the same top-to-bottom order. Dotted and
solid lines indicate, respectively, the nonoverlapping and overlapping CCSDs
that go into the observer’s computation of confidence. For each value of σ ,
50,000 trials were simulated. (a) Trials were simulated using believed uniform
CCSDs defined by q(s | C = 1) = U (s; a, b), with b − a = r = 2; q(s | C = −1) is
mirrored across s = 0, as described in section 2. When the CCSDs are believed
to be nonoverlapping (i.e., with a = 0 and b = 2, top inset), the 0.75 signature can
be observed as measurement noise approaches 0 (dotted black line). However,
mean Bayesian confidence decreases as a function of measurement noise. Ad-
ditionally, when the distributions overlap slightly (bottom two insets), the 0.75
signature will not be observed (solid black lines). (b) Moreover, when the CCSDs
are believed to be gaussian distributions defined by q(s | C = 1) = N (s;μC =
1, σC), the 0.75 signature will not be observed at any σC or measurement noise
level σ . One can intuitively understand why mean confidence is 0.5 for over-
lapping categories at very low measurement noise and increases with measure-
ment noise. At very low measurement noise, the observer makes measurements
that are very close to zero, which the observer “knows” are associated with a
low probability of being correct. However, as noise increases, the observer starts
to make measurements that have higher magnitude, leading the observer to be-
lieve that they have a higher probability of being correct. At high levels of noise,
confidence starts to decrease.

probability of being correct (or are incentivized to do so through a scoring
rule—(Brier, 1950; Gneiting & Raftery, 2007; Massoni, Gajdos, & Vergnaud,
2014), although in this case, it has been argued—(Adler & Ma, 2018; Ma
& Jazayeri, 2014)—that any Bayesian behavior might simply be a learned
mapping). In other words, in an experiment where subjects are asked to re-
port confidence on a scale of 1 to 5, a mean confidence of 3 only corresponds
to 0.75 if one makes the a priori assumption that there is a linear mapping
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Limitations of Proposed Signatures of Bayesian Confidence 7

between rating and perceived probability of being correct (Sanders et al.,
2016).

3.1.1 Relevant Assumptions in Hangya et al. (2016). Hangya et al. (2016)
describe an assumption that is critical for the 0.75 signature: each CCSD is a
continuous uniform distribution. However, the 0.75 signature depends on
two additional assumptions that they make implicitly. We reproduce their
proof, drawing attention to those assumptions. For clarity, we remove σ

from conf(x, σ ), p(x | s = 0, σ ), and q(C = 1 | x, σ ) as it is not necessary for
the proof.

Using the definition of expected value and splitting the integral:

E
x|s=0

[conf(x)] =
∫

p(x | s = 0)conf(x) dx

=
∫ 0

−∞
p(x | s = 0)conf(x) dx +

∫ ∞

0
p(x | s = 0)conf(x) dx

=
∫ 0

−∞
p(x | s = 0)q(C = −1 | x) dx

+
∫ ∞

0
p(x | s = 0)q(C = 1 | x) dx,

where they use the fact that for x > 0, confidence is equal to the posterior
probability of C = 1, and for x < 0, confidence is equal to the posterior prob-
ability of C = −1. Next, they make use of the symmetry of p(x | s = 0) about
x = 0 and of the symmetry q(C = −1 | −x) = q(C = 1 | x) to find

E
x|s=0

[conf(x)] = 2
∫ ∞

0
p(x | s = 0)q(C = 1 | x) dx.

Next, Hangya et al. (2016) assume q(C = 1 | x) = q(s > 0 | x). This is true
only in the case of nonoverlapping categories, in which C = 1 is equivalent
to s > 0:

E
x|s=0

[conf(x)] = 2
∫ ∞

0
p(x | s = 0)q(s > 0 | x) dx

= 2
∫ ∞

0
p(x | s = 0)

q(s > 0, x)
q(x)

dx

= 2
∫ ∞

0
p(x | s = 0)

[∫ ∞
0 q(x | s̃)q(s̃) ds̃

q(x)

]
dx. (3.1)

Next, Hangya (2016) assume that for s > 0, q(s) = q(x) = k, where k is a con-
stant. We will comment on this assumption below. Under this assumption,
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8 W. Adler and W. J. Ma

E
x|s=0

[conf(x)] = 2
∫ ∞

0
p(x | s = 0)

[∫ ∞

0
q(x | s) ds

]
dx. (3.2)

Then they assume that q(x | s) = p(x | s)—that the observer has accurate
knowledge of their measurement distribution—and apply a change of vari-
ables x̃ = x − s:

E
x|s=0

[conf(x)] = 2
∫ ∞

0
p(x | s = 0)

[∫ ∞

0
p(x | s) ds

]
dx

= 2
∫ ∞

0
p(x | s = 0)

[∫ x

−∞
p(x̃ | s = 0) dx̃

]
dx.

Finally, Hangya et al. (2016) use the following lemma:
∫ ∞

0 f (t)F(t) dt = 3
8 ,

where f (t) is a probability density function symmetric about zero, and its
cumulative distribution function is F(t) = ∫ t

−∞ f (x) dx. (Incidentally, their
proof of this lemma can be dramatically shortened. We present the short-
ened version in appendix C.) Then,

E
x|s=0

[conf(x)] = 0.75,

concluding the proof.
The assumption that we want to draw attention to is q(s) = q(x) = k. This

assumption is never exactly satisfied because such distributions would be
improper (i.e., not normalizable on R). However, we can relax the assump-
tion to q(s) being locally constant around s = 0 in a neighborhood that is
large relative to the measurement noise p(x | s). The reasoning is intuitively
as follows: In equation 3.1, p(x | s = 0) in effect filters out all values of x
more than, say, 3σ away from s = 0. Thus,

E
x|s=0

[conf(x)] ≈ 2
∫ 3σ

0
p(x | s = 0)

[∫ ∞
0 q(x | s̃)q(s̃) ds̃

q(x)

]
dx. (3.3)

As a consequence, we can assume that inside the [. . .], x ∈ [0, 3σ ]. Applying
the same 3σ buffer to s̃ around x, we approximate the inner integral as

∫ ∞

0
q(x | s̃)q(s̃) ds̃ ≈

∫ 6σ

0
q(x | s̃)q(s̃) ds̃.

Similarly, the normalization is

q(x) =
∫ ∞

−∞
q(x | s̃)q(s̃) ds̃
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Limitations of Proposed Signatures of Bayesian Confidence 9

≈
∫ 6σ

−3σ

q(x | s̃)q(s̃) ds̃.

If now q(s) = k for s ∈ [−3σ, 6σ ], we can approximate the part inside the
square brackets in equation 3.3 as

∫ ∞
0 q(x | s̃)q(s̃) ds̃

q(x)
≈ k

∫ 6σ

0 q(x | s̃) ds̃

k
∫ 6σ

−3σ
q(x | s̃) ds̃

≈
∫ ∞

0 q(x | s̃) ds̃
1

,

which brings us to equation 3.2. From there, the proof proceeds identically.
Of course, the choice of a multiplier of 3 on σ is arbitrary, and q(s) does
not have to be exactly constant near 0, but the quality of the approximation
relies on σ being small relative to the size of the neighborhood around 0
over which s is believed to be approximately constant. (A more rigorous
proof would involve a Taylor expansion of q(s) around x.)

In summary, we have highlighted two assumptions that are required for
Hangya et al.’s (2016) proof of the 0.75 signature: first, that the observer be-
lieves the CCSDs are nonoverlapping, and second, that measurement noise
is negligible relative to the size of the neighborhood around zero over which
s is believed by the observer to be constant. If either assumption is violated,
the proof does not apply, and the 0.75 signature is not expected under the
BCH.

3.2 The 0.75 Signature Is Not a Sufficient Condition for Bayesian Con-
fidence. We have shown that the 0.75 signature is not a necessary condition
for Bayesian confidence, but is it a sufficient condition? It is possible to show
that a signature is a sufficient condition if it is not possible to observe it un-
der any other model. One could put forward a trivial model that always
produces exactly midrange confidence on each trial, regardless of the mea-
surement. Therefore, the 0.75 signature is not a sufficient condition.

4 Divergence Signature 1: As Stimulus Magnitude Increases, Mean
Confidence Increases on Correct Trials But Decreases on Incorrect
Trials

Hangya et al. (2016) propose the following pattern as a signature of
Bayesian confidence. On correctly categorized trials, mean confidence is an
increasing function of stimulus magnitude (here, |s|), but on incorrect tri-
als, it is a decreasing function (see Figure 3a). We refer to this pattern as
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10 W. Adler and W. J. Ma

Figure 3: Divergence signature 1 is not a necessary condition for Bayesian con-
fidence. For two stimulus distribution types, we simulated 2 million trials.
(a) With uniform stimulus distributions defined by p(s | C = 1) = U (s; 0, 2), the
divergence signature is predicted under both high- and low-noise regimes. The
fadedness of the line indicates conditions for which there are few trials. (b) The
heat map indicates the slope of the pink lines in panel a. At all values of σ and
distribution range, the slope is negative. Slopes were obtained by generating
binned mean confidence values as in panel a and fitting a line to those val-
ues. Black markers indicate the parameters used in panel a, with the left dot
corresponding to the right plot and the converse. (c) With gaussian stimulus
distributions defined by p(s | C = 1) = N (s; 1, σC = 0.7), the divergence signa-
ture appears only when measurement noise is high (i.e., when σ � 0.6). (d) As
in panel b, but for gaussian distributions with means of ±1. Under some val-
ues of σ and σC, the slope is positive, indicating that the divergence signature
is not a necessary condition for Bayesian confidence. (e) Visual explanation for
why, under gaussian stimulus distributions, the divergence signature appears
only at relatively high σ values. Plots represent the same data as in panel c, but
over s instead of |s|. For clarity, we use only trials drawn from category C = 1;
the argument is mirrored for C = −1. Incorrect trials fall into two categories:
on trials in which s is positive but x is negative due to noise, confidence goes
down as |s| increases (branch 3); on trials in which s and x are both negative,
confidence increases with |s| (branch 4). At high levels of noise, branch 3 has
more trials than branch 4 and dominates the averaging that occurs when plot-
ting trials from both categories over |s|. At low levels of noise, branch 4 instead
dominates and the divergence signature disappears. Note that for nonoverlap-
ping distributions (e.g., those in panels a and b), there are no trials in which s
has a different sign from the stimulus distribution mean, so branches 2 and 4 do
not exist, and the divergence signature is always present.
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Limitations of Proposed Signatures of Bayesian Confidence 11

divergence signature 1.3 For the rest of the letter, we use divergence to refer
to the pattern of confidence as an increasing function of some variable on
correct trials and a decreasing function on incorrect trials.4

Divergence signature 1 has been observed in some behavioral experi-
ments (Kepecs et al., 2008; Komura et al., 2013; Lak et al., 2014; Sanders
et al., 2016). However, we demonstrate that as with the 0.75 signature (see
section 3), the signature is not always expected under the BCH.5 Therefore,
the appearance of the signature in these papers should not be taken to mean
that it should be generally expected.

4.1 Divergence Signature 1 is Not a Necessary Condition for Bayesian
Confidence. In this section, we argue that divergence signature 1 is ex-
pected only under specific conditions on the stimulus distribution p(s | C =
−1) and the noise distribution p(x | s, σ ).

4.1.1 Stimulus Distribution Type. To determine the conditions under
which the divergence signature is expected under the Bayesian model,
we used Monte Carlo simulation with the following procedure. We gen-
erated stimuli s, drawn with equal probability from stimulus distributions
p(s | C = −1) and p(s | C = 1). We generated noisy measurements x from
these stimuli, using measurement noise levels σ . We generated observer
choices from these measurements, using the decision rule of choosing Ĉ = 1
when x > 0. We computed Bayesian confidence for every trial, assuming
that the observer has accurate knowledge of their measurement distribu-
tions and of the CCSDs: q(. . .) = p(. . .).

Nonoverlapping uniform CCSDs. We first consider the case of CCSDs that
are uniform on an interval and do not overlap. This is an example covered
by Hangya et al.’s (2016) proof. Indeed, we find in simulations that diver-
gence signature 1 is expected under the Bayesian model in both high- and
low-noise regimes (see Figures 3a and 3b). The intuition for why this pat-
tern occurs is as follows. On correct trials, as stimulus magnitude increases,
the mean magnitude of the measurement x increases. Because measurement

3
Kepecs and Mainen (2012), Insabato, Pannunzi, and Deco (2016), and Fleming and

Daw (2017) call it the (folded) X-pattern.
4
The term divergence does not normally imply opposite trends. For example, the lower

function could be flat or even increasing. However, we could not think of a better one-
word alternative.

5
Our finding is distinct from that of Insabato et al. (2016), who show that the signa-

ture would not be predicted under a non-Bayesian model in which the observer uses two
measurements on each trial.

Our analyses concern only Bayesian models in which the observer has a single mea-
surement on each trial.Our finding is also distinct from that of Fleming and Daw (2017),
who show that the divergence signature would not be predicted if the experimenter could
plot confidence as a function of the internal measurement x. Our analyses concern confi-
dence only as a function of the stimulus s, which, unlike x, is known by the experimenter.
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magnitude is monotonically related to Bayesian confidence, this increases
mean confidence. However, on incorrect trials (in which x and s have oppo-
site signs), the mean magnitude of the measurement decreases (see Figure
5a), which in turn decreases mean confidence (see Figures 5b and 5c). The
proof by Hangya et al. (2016) and the intuition are not limited to uniform
CCSDs (truncated gaussians will also work, for example), but do require the
CCSDs to be nonoverlapping. When the stimulus distributions are nonover-
lapping, divergence is expected under any level of measurement noise (see
Figures 3a and 3b).

Gaussian CCSDs. We now consider gaussian CCSDs. In this case, when
measurement noise is high relative to stimulus distribution width (see Fig-
ure 3c, left), the signature is still expected. However, when measurement
noise is low relative to stimulus distribution width, the divergence signa-
ture is not expected (see Figures 3c and 3d). To gain intuition for why this
is, imagine an optimal observer with zero measurement noise. In tasks with
overlapping categories, even this observer cannot achieve perfect perfor-
mance; some trials from category C = 1 will have negative s and x values,
resulting in an incorrect choice. For such stimuli, confidence increases with
stimulus magnitude. At relatively low noise levels, these stimuli represent
the majority of all incorrect trials for category C = 1 (see Figure 3e, right).
This effect causes the divergence signature to disappear when plotting over
|s|, that is, averaging over errors with positive and negative s. In this partic-
ular case, an experimenter could “rescue” the signature by plotting confi-
dence as a function of signed stimulus value s for a given true category. This
would produce plots such as Figure 3e (right), which have a characteristic
crossing pattern. Researchers using more unusual categories than the ones
presented here might consider running simulations to see if the signature
is expected and, if not, whether this method could “rescue” the signature
in their case.

4.1.2 Relevant assumption in Hangya et al. (2016). The gaussian CCSD
example shows that divergence signature 1 is not a necessary condition
for Bayesian confidence. By contrast, the proof in Hangya et al. (2016)
seems quite general. We can resolve this paradox by making explicit the
assumptions hidden in the proof. The authors assume that “for incorrect
choices . . . with increasing evidence discriminability, the relative frequency
of low-confidence percepts increases while the relative frequency of high-
confidence percepts decreases” (p. 1847).6 This assumption is violated in
the case of overlapping gaussian stimulus distributions. For some incorrect

6
Earlier in their paper, Hangya et al. (2016) phrase this assumption as, “For any given

confidence c, the relative frequency of percepts mapping to c by ξ changes monotonically
with evidence discriminability for any fixed choice” (p. 1847). In our terminology, this is
equivalent to saying that as |s| increases, the frequency of reporting any particular level of
confidence changes monotonically. This is not correct even in the case of nonoverlapping
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choices (see branch 4 of Figure 3e), as s becomes more discriminable (i.e.,
very negative), the frequency of high-confidence reports increases. At low
levels of measurement noise, this causes the divergence signature to disap-
pear when plotting over |s|.

4.2 Divergence Signature 1 is Not a Sufficient Condition for Bayesian
Confidence. It has been previously noted that the signature is expected
under a number of non-Bayesian models (Fleming & Daw, 2017; Insabato
et al., 2016; Kepecs & Mainen, 2012). Here, we describe an additional
non-Bayesian model—one in which confidence is a function only of |x|,
the magnitude of the measurement (Kepecs et al., 2008). Previous studies
have referred to similar models as fixed (Adler & Ma, 2018; Denison et al.,
2018; Qamar et al., 2013) or difference (Aitchison et al., 2015). In the general
family of binary categorization tasks described in section 2, the confidence
of this model is monotonically related to the confidence of the Bayesian
model conf(x, σ ). Thus, when divergence signature 1 is predicted by the
Bayesian model, it is also predicted by this measurement model, underscor-
ing that the divergence signature is not a sufficient condition for Bayesian
confidence.

5 Divergence Signature 2: As Measurement Noise Decreases, Mean
Confidence Increases on Correct Trials But Decreases on Incorrect
Trials

Navajas et al. (2017) conduct an experiment in which they present, on each
trial, a sequence of oriented Gabors with orientations pseudo-randomly
drawn from a uniform distribution on an interval, with the range of the
interval chosen randomly from four possible values. They then ask subjects
to judge whether the mean orientation is left or right of vertical and to pro-
vide a confidence report. They plot mean confidence (conditioned on cor-
rectness) as a function of stimulus range. Data from some of their subjects
show strongly divergent confidence (i.e., oppositely signed slopes for con-
fidence on correct and incorrect trials), but their averaged data (see Figure
4a) do not.

Navajas et al. (2017) write that normative arguments would lead one to
expect a diverging pattern, citing Hangya et al. (2016). However, Hangya
et al. (2016) show that divergence is expected only when the x-axis is stim-
ulus magnitude, not stimulus distribution range. Because of this differ-
ence, we treat a divergence in this kind of plot as a new possible signature,
which we call divergence signature 2. For this to be a signature of Bayesian

uniform stimulus distributions. For example, at low noise, as discriminability increases,
the frequency of medium-confidence reports will increase and then decrease. Therefore,
we will use the formulation of the assumption further down on p. 1847, which correctly
narrows it down to incorrect choices.
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Figure 4: Divergence signature 2 is predicted by Navajas et al.’s (2017) stochas-
tic updating model but is not present in either their data or the prediction of a
simple Bayesian model. (a) Averaged confidence data in their perceptual task
do not show the signature. (b) Navajas et al. (2017) build a stochastic updating
model that does predict divergence signature 2. (c) Mean Bayesian confidence
as a function of measurement noise is not expected to show opposite trends
when conditioned on correctness, suggesting that divergence signature 2 might
not be generally expected. At each value of σ , 50,000 stimuli were stimulated,
with s = ±1. (Panels a and b adapted by permission from Macmillan Publishers
Ltd: Nature Human Behaviour, Navajas et al., 2017.)

confidence, we would have to show that a Bayesian model would predict
this pattern. We show that this pattern is not necessarily expected under the
BCH.

5.1 Navajas et al.’s (2017) Stochastic Updating Model. Instead of a
Bayesian model, Navajas et al. (2017) use a model that on each trial, up-
dates a variable μ that is meant to be the estimate of the mean orientation,

μi ∼ N ((1 − λ)μi−1 + λθi, σi) , (5.1)

where μi is the estimate after i samples (μ0 = 0), θi is the ith orientation
stimulus in the sequence, and λ is a constant between 0 and 1. Navajas et al.
(2017) incorporate into their model an assumption of orientation-dependent
noise (Girshick et al., 2011) by setting σi = γ |θi|, where γ is a free param-
eter indicating the strength of the noise. Because the SD of each update
is proportional to |θi|, more tilted orientations are measured with greater
noise, and trials drawn from distributions with greater range therefore have
lower performance. (Their subjects performed worse on trials with greater
stimulus distribution range, but without orientation-dependent noise, their
model would perform equally well on each condition.) Because of this rela-
tionship, we will also use “divergence signature 2” to refer to confidence di-
vergence (conditioned on correctness) as a function of measurement noise.

Navajas et al. (2017) then derive their measure of confidence from this
decision variable. After fitting, this model produces a diverging pattern (see
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Figure 4b). Because this pattern is not present in their averaged data (see
Figure 4a), they conclude that the stochastic updating model is inadequate.
To account for the discrepancy, they then incorporate Fisher information
into their model, which produces a better fit; the authors’ main result relies
on analysis of the parameters of this “hybrid” model.

Critically, however, the stochastic updating model is not a Bayesian
model. Under a Bayesian model, each θi would contribute equally to the
final estimate of the mean. For that to follow from equation 5.1, λ would
have to equal 1

i . However, their λ is not i-dependent. Therefore, μi is not
the decision variable that a Bayesian observer would base either choice or
confidence on. The fact that the stochastic updating model is not Bayesian
has two implications. First, the stochastic updating model producing diver-
gence signature 2 does not imply that it is expected under the BCH. Second,
the deviation of their model predictions from the data does not provide any
evidence against the BCH.

5.2 Simple Bayesian Model. We constructed a simple Bayesian model
to test whether divergence signature 2 is generally expected under the BCH.
Our model does not include an updating component because the temporal
dynamics in this task are irrelevant for optimal choice and confidence.

In Navajas et al. (2017), the mean of all the stimuli presented on each
trial is forced to be either 3◦ or −3◦. Accordingly, we generated stimuli
with s = ±1, corresponding to C = ±1. In our model, we drew noisy mea-
surements x from p(x | s, σ ) = N (x; s, σ ). Under Navajas et al.’s (2017) as-
sumption of orientation-dependent noise, draws from distributions with
greater range are measured with higher levels of noise. We build this
assumption into our simple model by using σ as a proxy for stimulus dis-
tribution range. Higher values of σ correspond to trials drawn from dis-
tributions with greater range. As described in section 4.1.1, we generated
observer choices and computed Bayesian confidence assuming that the ob-
server has accurate knowledge of their measurement distributions and of
the CCSDs.

We find that as measurement noise decreases, mean confidence increases
for both correct and incorrect trials (see Figure 4c). This pattern also holds
when the category-conditioned stimulus distributions are uniform or gaus-
sian and if one plots a measure of stimulus distribution variance on the
x-axis (either uniform distribution range r or gaussian distribution SD σC).
This indicates that divergence signature 2 is not necessarily expected under
the BCH.

We emphasize that we are not claiming that Navajas et al.’s (2017) data
are best explained by a Bayesian model. In fact, just as they use Fisher in-
formation to bend the predictions of their stochastic updating model (see
Figure 4b) upward to fit their data (see Figure 4a), our simulation (see Fig-
ure 4c) suggests that a post hoc addition to our Bayesian model would have
to bend the predictions downward. However, our goal is not to fit their data
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but merely to show that divergence signature 2 is not necessarily expected
under a Bayesian model. There are several ways in which we can imagine
constructing a more complete Bayesian model of their task. For example, the
observer might marginalize over the nuisance parameter of stimulus range
when computing confidence. Determining whether confidence in Navajas
et al.’s (2017) data is Bayesian would thus require careful quantitative model
comparison.

We also note that in our Bayesian model, the observer has accurate
knowledge of their own measurement noise, which may not be the case
for the observers in Navajas et al. (2017) However, even when observers
have incorrect beliefs about their measurement noise, the pattern of mean
confidence still does not show divergence as in Figure 4b (see appendix D).

5.3 Why the Intuition for Divergence Signature 1 Does Not Predict
Divergence Signature 2. We have shown that although divergence signa-
ture 1 is not completely general, it is expected under the BCH in some cases
(see Figure 3a). By contrast, we have no indication of whether divergence
signature 2 is ever expected from simple Bayesian models, such as the one
described in section 5.2, when plotting measurement noise on the x-axis.
This may be surprising, because the intuition for divergence signature 1
might seem to apply equally to this case. However, the effect of measure-
ment noise on mean confidence is different from the effect of stimulus mag-
nitude because measurement noise, unlike stimulus magnitude, affects the
mapping from measurement to confidence on a single trial.

Mean Bayesian confidence is a function of two factors: confidence on a
single trial and the probability of the corresponding measurement:

E
x

[conf(x, σ )] =
∫

p(x | s, σ ) conf(x, σ ) dx.

The intuition for divergence signature 1 is as follows. As stimulus magni-
tude |s| increases, the measurement distribution p(x | s, σ ) shifts, and the
mean measurement magnitude on incorrect trials decreases (see Figure 5a).
One might expect this intuition to also result in divergence signature 2, since
the effect of decreased measurement noise σ on p(x | s, σ ) also results in a
decreased measurement magnitude on incorrect trials (see Figure 5d). How-
ever, σ additionally affects conf(x, σ ), the per trial deterministic mapping
from measurement and noise level to Bayesian confidence (see Figure 5e),
whereas stimulus magnitude does not (see Figure 5b). Therefore, when σ

is variable, the resulting effect on the measurement distribution is insuffi-
cient for describing the pattern of mean confidence on incorrect trials, re-
quiring simulation. We simulated experiments as described in section 4.1
and demonstrate why stimulus magnitude and measurement noise have
different effects on mean confidence on incorrect trials (see Figure 5).
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Figure 5: Explanation for why divergence signature 1 is sometimes expected
but why divergence as a function of measurement noise might never be ex-
pected. Although both increased stimulus magnitude and decreased measure-
ment noise cause the mean measurement magnitude to decrease on incorrect
trials, they have different effects on mean confidence. At each value of σ , 2 mil-
lion stimuli were simulated, using uniform stimulus distributions defined by
p(s | C = 1) = U (s; 0, 2) (the case of Figure 3a). (a) As described previously (Dru-
gowitsch, 2016; Hangya et al., 2016; Kepecs et al., 2008), an increase in stimulus
magnitude causes the mean measurement magnitude to decrease on incorrect
trials. (b) Measurements are mapped onto confidence values using the deter-
ministic function conf(x, σ ), which is equivalent to the posterior probability that
the choice is correct (see section 2). (c) This mapping results in divergence sig-
nature 1, a decrease in mean confidence on incorrect trials. Arrows do not align
precisely with the simulated mean because the confidence of the mean measure-
ment is not exactly equal to the mean confidence. (d) Adecrease in measurement
noise also causes the mean measurement magnitude to decrease on incorrect
trials. (e) Because the mapping from measurement to confidence conf(x, σ ) is
dependent on σ , measurements from the less noisy distribution have higher
confidence. (f) Because the confidence mapping is dependent on σ , divergence
as a function of measurement noise is not necessarily expected under Bayesian
confidence.

6 Other Signatures

A third signature in Hangya et al. (2016) that we do not discuss here (that
confidence equals accuracy) is like the 0.75 signature in that it requires ei-
ther explicit reports of perceived probability of being correct or the exper-
imenter to choose a mapping between rating and perceived probability of
being correct (see section 3.1). For any monotonic relationship between ac-
curacy and confidence, it is likely that there is some mapping that equates
the two, in which case the signature would not be a sufficient condition for
the BCH.
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A fourth signature (that confidence allows a better prediction of accu-
racy than stimulus magnitude alone) is, like divergence signature 1, also
predicted by the measurement model (see section 4.2) and is therefore also
not a sufficient condition for the BCH.

7 Discussion

We have demonstrated that even in the relatively restricted class of binary
categorization tasks that we consider here (see section 2), some signatures
are neither necessary nor sufficient conditions for the BCH. Specifically, the
0.75 signature is expected only when observers have very low measure-
ment noise and believe that the CCSDs are nonoverlapping. Additionally,
despite claims that divergence signature 1 is “robust to different stimulus
distributions” (Kepecs & Mainen, 2012) it is only expected under nonover-
lapping stimulus distributions or overlapping (e.g., gaussian) stimulus dis-
tributions with high measurement noise. (However, a researcher using
overlapping stimulus distributions may still be able to “rescue” the signa-
ture by plotting a slightly modified version, as we describe in section 4.1.1.)
Because of their nongenerality, these signatures are therefore not necessary
conditions of Bayesian confidence. Furthermore, they may be observed un-
der non-Bayesian models, indicating that they are also not sufficient condi-
tions (Fleming & Daw, 2017; Insabato et al., 2016).

Adiscrepancy in the literature (Navajas et al., 2017) has emerged through
the confusion of divergence signature 1 with a second form, in which stimu-
lus magnitude is replaced with another variable that is related to accuracy.7

We have shown that while divergence signature 1 holds in some cases, there
is no evidence that the second form is ever expected under the BCH, which
resolves this discrepancy.

The appearance of confidence signatures may depend on the observer’s
belief about the CCSDs, q(s | C). For instance, we showed that the 0.75 signa-
ture is not expected if the observer believes that the CCSDs are overlapping,
regardless of the true distribution p(s | C). In our simulations of divergence
signature 1, we assumed that q(s | C) = p(s | C), but it may be that there are
erroneous beliefs q(s | C) that eliminate this signature as well. This may be
an important consideration for some experimenters due to the difficulty of
communicating the CCSDs to observers, especially nonhuman observers.
One might assume that with enough training, observers would learn the
CCSDs, but critically, the observer has access only to x and not to s. At high
levels of measurement noise, for instance, this could lead to a belief that
the categories are overlapping, which would eliminate the 0.75 signature.

7
Kiani, Corthell, and Shadlen (2014) also note the lack of the divergence signature in

their data, but because their stimuli have variable duration, optimality is more compli-
cated to characterize (Drugowitsch, DeAngelis, Klier, Angelaki, & Pouget, 2014), and the
explanation we offer here may not apply.
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For human observers, experimenters may be able to ameliorate this issue
by training observers on the categories at low noise, informing the subject
that the CCSD will be the same at higher noise levels. However, even this
might not ensure that q(s | C) = p(s | C). Additionally, we are not aware of a
good strategy for nonhuman observers. Because the signatures might not be
present in data from an otherwise Bayesian observer with erroneous beliefs
about the CCSDs, an experimenter expecting the signatures might incor-
rectly rule out that the observer is Bayesian.

Some of our critique of the signatures has focused on the implicit as-
sumption that experiments use nonoverlapping stimulus distributions. One
could object to our critique by questioning the relevance of overlapping
stimulus distributions, given that nonoverlapping stimulus distributions
are the norm in the confidence literature (Aitchison et al., 2015; Kepecs &
Mainen, 2012; Kepecs et al., 2008; Sanders et al., 2016). But although over-
lapping categories are only just beginning to be used to study confidence
(Adler & Ma, 2018; Denison et al., 2018), such categories have a long his-
tory in the perceptual categorization literature (Ashby & Gott, 1988; Green
& Swets, 1966; Healy & Kubovy, 1981; Lee & Janke, 1964; Liu, Knill, & Ker-
sten, 1995; Qamar et al., 2013; Sanborn, Griffiths, & Shiffrin, 2010). It has
been argued that overlapping gaussian stimulus distributions have sev-
eral properties that make them more naturalistic than nonoverlapping dis-
tributions (Maddox, 2002). The property most relevant here is that with
overlapping categories, perfect performance is impossible, even with zero
measurement noise. With overlapping categories, as in real life, identi-
cal stimuli may belong to multiple categories. Imagine a coffee drinker
pouring salt rather than sugar into her drink, a child reaching for his
parent’s glass of whiskey instead of his glass of apple juice, or a doctor
classifying a malignant tumor as benign (Augsburger, Corrêa, Trichopou-
los, & Shaikh, 2008). In all three examples, stimuli from opposing cat-
egories may be visually identical, even under zero measurement noise.
For more naturalistic experiments with overlapping categories, qualitative
signatures will be unusable if their derivations assume nonoverlapping
categories.

Given our demonstration that proposed qualitative signatures of con-
fidence have limited applicability, what is the way forward? One option
available to confidence researchers is to discover more signatures, being
careful to find the specific conditions under which they are expected. Con-
fidence experimentalists should then make sure to look for such signatures
only when their tasks satisfy the specified conditions (e.g., stimulus distri-
bution type, noise level). However, for researchers interested in testing the
BCH, we do not necessarily advocate for this course of action because even
when applied to relevant experiments, the presence or absence of qualita-
tive signatures provides an uncertain amount of evidence for or against the
BCH. Testing for the presence of qualitative signatures is a weak substitute
for accumulating probabilistic evidence, something that careful (Palminteri,
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Wyart, & Koechlin, 2017) quantitative model comparison does more ob-
jectively. Testing for signatures requires the experimenter to make two
subjective judgments. First, the experimenter must determine whether the
signature is present, a task potentially made difficult by the fact that real
data are noisy. Second, the experimenter must determine how much evi-
dence provides in favor of the BCH and whether further investigation is
warranted. By contrast, model comparison provides a principled quantity
(namely, a log likelihood) in favor of the BCH over some other model (Adler
& Ma, 2018; Aitchison et al., 2015; Denison et al., 2018). Given the caveats
associated with qualitative signatures, it may be that as a field, we have no
choice but to rely on formal model comparison.

Appendix A: Sufficient Conditions for the MAP Decision Rule

to Be x
?
> 0

We wish to specify conditions under which, for all x > 0, the maximum a
posteriori (MAP) decision rule is Ĉ = 1, that is, q(C = 1 | x) > q(C = −1 | x),
in which q(C = 1 | x) is the posterior probability that the category is C = 1,
given a measurement x. For clarity, we remove σ from q(x | s, σ ) and q(C |
x, σ ), as it is not necessary for the proof.

Condition 1. The observer believes that each category is equally probable:

q(C = 1) = q(C = −1).

Condition 2. The observer believes that the category-conditioned stimulus
distributions are mirrored across s = 0:

q(s | C = 1) = q(−s | C = −1).

Condition 3. The observer believes that a nonnegative stimulus is at least
as probable under category C = 1 as under category C = −1. For s ≥ 0,

q(s | C = 1) ≥ q(s | C = −1).

Condition 4. The observer believes that the measurement distribution is a
symmetric, monotonically decreasing function of the stimulus:

q(x | s) = F(|x − s|),

where F is a monotonically decreasing function. Gaussian measurement
noise satisfies this assumption.

We will use �posterior(x) ≡ q(C = 1 | x) − q(C = −1 | x).
Under the above conditions, for all x > 0, �posterior(x) ≥ 0.
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Proof. By Bayes’ rule,

�posterior(x) = q(x | C = 1)q(C = 1)
q(x)

− q(x | C = −1)q(C = −1)
q(x)

.

By condition 1,

�posterior(x) ∝ q(x | C = 1) − q(x | C = −1)

=
∫ ∞

−∞
q(x | s)q(s | C = 1) ds −

∫ ∞

−∞
q(x | s)q(s | C = −1) ds.

Using �s(s) ≡ q(s | C = 1) − q(s | C = −1),

�posterior(x) ∝
∫ ∞

−∞
q(x | s)�s(s) ds

=
∫ 0

−∞
q(x | s)�s(s) ds +

∫ ∞

0
q(x | s)�s(s) ds.

We perform a change of variables s̃ = −s:

�posterior(x) ∝
∫ ∞

0
q(x| − s̃)�s(−s̃) ds̃ +

∫ ∞

0
q(x|s)�s(s) ds.

Using condition 2, some rearrangement, and then condition 4:

�posterior(x) ∝ −
∫ ∞

0
q(x | −s)�s(s) ds +

∫ ∞

0
q(x | s)�s(s) ds

=
∫ ∞

0

[
q(x | s) − q(x | −s)

]
�s(s) ds

=
∫ ∞

0
[F(|x − s|) − F(|x + s|)] �s(s) ds. (A.1)

Our integral spans only the nonnegative domain, s ≥ 0. Additionally, we
only consider x > 0. For s ≥ 0, |x + s| ≥ |x − s| and thus, from condition 4,
F(|x − s|) − F(|x + s|) ≥ 0. It also follows from condition 3 that �s ≥ 0. Be-
cause both factors in equation A.5 are nonnegative, �posterior(x) ≥ 0 for all
x > 0. When �posterior(x) > 0, the category with the higher posterior proba-
bility is C = 1; when �posterior(x) = 0, both categories have equal posterior
probability. �
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Appendix B: Derivation of Bayesian Confidence

As described in section 2, if an observer’s confidence behavior is Bayesian,
it is a function of the posterior probability of the most probable category. By
Bayes’ rule,

conf(x, σ ) = max
C

q(C | x, σ )

= max
C

q(x | C, σ )q(C)∑
C q(x | C, σ )q(C)

= max
C

q(x | C, σ )∑
C q(x | C, σ )

. (B.1)

In the last step, we eliminated the prior because each category is equally
likely and we assume that the observer knows this (i.e., q(C = 1) = q(C =
−1)). We now derive the task-specific likelihood functions q(x | C, σ ) used
in our simulations. The observer does not know the true stimulus value s,
but does know that the measurement is drawn from a gaussian distribu-
tion with a mean of s and SD σ . Using this knowledge, the Bayesian ob-
server marginalizes over s by convolving the stimulus distributions with
their noise distribution:

q(x | C, σ ) =
∫

q(x | s, σ )q(s | C) ds

=
∫

N (x; s, σ )q(s | C) ds. (B.2)

For uniform category distributions, we plug q(s | C) = U (s; a, b) into equa-
tion B.2 and simplify:

qU(x | C, σ ) =
∫

N (x; s, σ )U (s; a, b) ds

= 1
b − a

∫ b

a
N (x; s, σ ) ds

= 1
b − a

(
	

(
b − x

σ

)
− 	

(
a − x

σ

))
, (B.3)

where 	 is the cumulative distribution function of the standard nor-
mal distribution. For gaussian category distributions, we plug q(s | C) =
N (s;μC, σC) into equation B.2 and simplify,
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qG(x | C, σ ) =
∫

N (x; s, σ )N (s;μC, σC) ds

= N
(

x;μC,

√
σ 2 + σ 2

C

)
, (B.4)

using σC = 0 if stimuli from a given category always take on the same value
μC.

Finally, plug the task-appropriate likelihood function (equation B.3 or
B.4) into equation B.1.

Appendix C: Simpler Proof of Hangya et al. (2016) Lemma

The last step of the proof of the 0.75 signature (see section 3.1.1) uses a
lemma proved by Hangya et al. (2016):

Lemma. Integrating the product of the probability density function f (t) and the
distribution function F(t) = ∫ t

−∞ f (x) dx of any probability distribution symmet-
ric to zero over the positive half-line results in 3/8:

∫ ∞

0
f (t)F(t)dt = 3

8
.

There is a simpler proof of the lemma than the one by Hangya et al. (2016):

Proof. Using integration by parts and that f (t) = F′(t) by definition,

∫ ∞

0
f (t)F(t) dt = F(∞)F(∞) − F(0)F(0) −

∫ ∞

0
f (t)F(t) dt

2
∫ ∞

0
f (t)F(t) dt = F(∞)F(∞) − F(0)F(0).

Because F is a cumulative distribution function of a probability distribution
symmetric across zero, F(∞) = 1 and F(0) = 1

2 :

2
∫ ∞

0
f (t)F(t) dt = 1 − 1

4∫ ∞

0
f (t)F(t) dt = 3

8
.

�

Appendix D: False Beliefs about Measurement Noise

So far, this letter, as in Hangya et al. (2016), has assumed that observers have
accurate knowledge of their own measurement noise. Because it may be of
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Figure 6: As in Figure 3a. True measurement noise is σ = 1. The divergence
signature is present at all levels of σbelieved.

Figure 7: As in Figure 2a, except that simulations were conducted under
σbelieved

r = 0.1. The 0.75 signature is not present, even for nonoverlapping dis-
tributions (dashed line) at zero measurement noise.

interest to readers to know what happens when this assumption is violated,
we ran our simulations under the condition that the observer has incorrect
beliefs about her measurement noise. Specifically, we ran simulations using
p(x | s, σ ) = N (x; s, σ ) and q(x | s, σbelieved) = N (x; s, σbelieved), where σ may
or may not be equal to σbelieved.

D.1 Divergence Signature 1. First, we find that under nonoverlapping
categories, divergence signature 1 (see section 4) holds regardless of the ob-
server’s knowledge of their measurement noise (see Figure 6).

D.2 0.75 Signature. We find that in addition to the conditions described
in section 3, the 0.75 signature holds only when the observer has accurate
knowledge of her own measurement noise (see Figure 7).

D.3 Divergence Signature 2. We observe that for no value of σbelieved
that we tested does divergence signature 2 (see section 5) appear (see
Figure 8). Our conclusion that divergence signature 2 is not expected under
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Figure 8: As in Figure 4c. True measurement noise is σ = 1. Divergence signa-
ture 2 is not present or is present only weakly.

Table 1: Comparison of Terminology and Notation.

This Letter Hangya et al. (2016)

True category C Not used
Stimulus s Evidence d
Stimulus magnitude |s| Discriminability �

Measurement x Percept d̂
Measurement noise σ Not used
Choice Ĉ Choice ϑ

Confidence q(C = Ĉ | x, σ ) = conf(x, σ ) Confidence c = ξ (d̂, ϑ )

the BCH is therefore robust to the observer having incorrect beliefs about
her measurement noise.

To understand why, as σ decreases, mean confidence for correct and in-
correct trials slope decreases rather than increases, as in Figure 4c, consider
the didactic presented in Figure 5. In each individual case shown in Figure
8, we vary σ in p(x | s, σ ) but fix σbelieved to a single value in q(x | s, σbelieved).
This means that the generating distributions p(x | s, σ ) will vary with σ as
depicted in Figure 5d, but that in Figure 5e, there will be only one confi-
dence mapping function conf(x, σbelieved) for all σ . This will change the sign
of the slope of mean confidence.

Appendix E: Terminology and Notation

Because some of our terminology and notation relate to that used in Hangya
et al. (2016), we provide Table 1 to enable easier comparison between the
two papers. In some cases, the variables are not exactly identical: the terms
in Hangya et al. may be more general. This does not affect the validity of
our claims. For consistency, we always describe their work using our termi-
nology and notation.
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